Использование энергии

Использование солнечной энергии на Земле

Использование солнечной энергии на Земле. Перспективы использования энергии Солнца на Земле

На сегодняшний день проблема расхода энергии стоит достаточно остро – ресурсы планеты не бесконечны и за время своего существования человечество изрядно опустошило то, что было дано природой. На данный момент активно проводится добыча угля и нефти, запасы которых с каждым днем становятся все меньше. Сила мысли позволила человечеству сделать невероятный шаг в будущее и использовать атомную энергию, привнеся вместе с этим благом огромную опасность для всей окружающей среды.

Не менее остро стоит вопрос экологический – активная добыча ресурсов и их дальнейшее использование пагубно сказывается на состоянии планеты, изменяя не только природу почв, но даже климатические условия.

Именно поэтому особенное внимание всегда уделялось естественным источникам энергии, таким, к примеру, как вода или ветер. Наконец, спустя столько лет активных исследований и разработок человечество «доросло» до использования энергии Солнца на Земле. Именно о нем и пойдет далее речь.

Прежде чем переходить к конкретным примерам, выясним, чем же так сильно заинтересовал этот вид добычи энергии исследователей всего мира. Основным его достоянием можно назвать неисчерпаемость. Несмотря на многочисленные гипотезы, вероятность того, что звезда вроде Солнца погаснет в ближайшее время, крайне мала. Значит, перед человечеством открыта возможность получать чистую энергию совершенно естественным путем.

Второе несомненное преимущество использования энергии Солнца на Земле заключается в экологичности этого варианта. Воздействие на окружающую среду при таких условиях будет нулевым, что в свою очередь обеспечивает всему миру куда более светлое будущее, нежели то, которое открывается при постоянной добыче ограниченных подземных ресурсов.

Наконец, следует уделить отдельное внимание тому факту, что использование энергии Солнца представляет наименьшую опасность для самого человека.

Теперь перейдем к сути. Под несколько поэтичным названием «солнечная энергия» скрывается на самом деле преобразование радиации в электричество при помощи специально разработанных технологий. Данный процесс обеспечивают фотоэлектрические элементы, которые человечество чрезвычайно активно использует в своих целях, причем достаточно успешно.

Так уж сложилось исторически, что существительное «радиация» вызывает у человека скорее негативные ассоциации, нежели позитивные в связи с теми техногенными катастрофами, которые миру удалось пережить на своем веку. Тем не менее технология использования энергии Солнца на Земле предусматривает работу именно с ней.

По сути, данный вид радиации представляет собой электромагнитное излучение, диапазон которого находится в промежутке от 2,8 до 3,0 мкм.

Столь успешно используемый человечеством солнечный спектр состоит на самом деле из трех видов волн: ультрафиолетовых (примерно 2%), примерно 49% составляют световые волны и, наконец, еще столько же приходится на инфракрасное излучение. Солнечная энергия имеет небольшое количество других составляющих, однако роль их столь незначительна, что особого воздействия на жизнь Земли они не имеют.

Теперь, когда состав используемого на благо человечества спектра определен, следует отметить еще одну важную особенность данного ресурса. Использование солнечной энергии на Земле кажется весьма перспективным еще и потому, что она доступна в довольно большом количестве при практически минимальных затратах на переработку. Общее количество излучаемой звездой энергии чрезвычайно велико, однако до поверхности Земли доходит примерно 47%, что равно семистам квадриллионам киловатт-часов. Для сравнения отметим, что всего один киловатт-час сможет обеспечить десятилетнюю работу лампочки мощностью в сто ватт.

Мощность излучения Солнца и использование энергии на Земле, конечно, зависит от целого ряда факторов: климатических условий, угла падения лучей на поверхность, времени года и географического положения.

Несложно догадаться, что суточное количество солнечной энергии, попадающей на поверхность Земли, постоянно меняется, поскольку напрямую зависит от положения планеты по отношению к Солнцу и движения самого светила. Давно известен тот факт, что в полдень излучение максимально, в то время как утром и вечером количество достигающих поверхности лучей значительно меньше.

С уверенностью можно говорить о том, что использование энергии Солнца будет наиболее продуктивно в регионах, максимально приближенных к экваториальной полосе, поскольку именно там разница между высшими и низшими показателями минимальна, что говорит о максимальном количестве радиации, достигающей поверхности планеты. К примеру, на территории пустынных африканских участков годовое количество излучения достигает в среднем 2200 киловатт-часов, в то время как на территории Канады или, к примеру, Центральной Европы показатели не превышают 1000 киловатт-часов.

Если мыслить максимально широко, попытки «приручить» великое светило, согревающее нашу планету, начались еще в глубокой древности во времена язычества, когда каждая стихия была воплощена отдельным божеством. Однако, конечно, тогда об использовании солнечной энергии даже речи быть не могло – в мире царила магия.

Тема использования энергии Солнца на Земле стала активно подниматься только в конце XIV – начале ХХ века. Настоящий прорыв в науке был совершен в 1839 году Александром Эдмоном Беккерелем, которому удалось стать первооткрывателем фотогальванического эффекта. Изучение данной темы значительно усилилось, и уже через 44 года Чарльз Фриттс смог сконструировать первый в истории модуль, в основе которого был позолоченный селен. Такое использование энергии Солнца на Земле давало небольшое количество высвобождаемого электричества – общее количество выработки тогда составило не более 1%. Тем не менее для всего человечества это стало настоящим прорывом, открывшим новые горизонты науки, о которых ранее не приходилось даже мечтать.

Весомый вклад в развитие солнечной энергетики внес в свое время сам Альберт Эйнштейн. В современном мире имя ученого чаще связывают с его знаменитой теорией относительности, однако на самом деле Нобелевской премии он был удостоен именно за изучение внешнего фотоэффекта.

До наших дней технология использования энергии Солнца на Земле переживает то стремительные взлеты, то не менее стремительные падения, однако эта отрасль знаний постоянно пополняется новыми фактами, и можно надеяться, что уже в обозримом будущем перед нами откроется дверь в совершенно новый мир.

О достоинствах использования энергии Солнца на Земле мы уже говорили. Теперь обратим внимание на недостатки данного метода, которых, к сожалению, не меньше.

Из-за прямой зависимости от географического положения, климатических условий и движения Солнца выработка солнечной энергии в достаточном количестве требует огромных территориальных затрат. Суть заключается в том, что чем больше будет площадь потребления и переработки солнечной радиации, тем большее количество экологически чистой энергии мы получим на выходе. Размещение же таких огромных систем требует большого количества свободной площади, что вызывает определенные затруднения.

Еще одна проблема, касающаяся использования энергии Солнца на Земле, заключается в прямой зависимости от времени суток, поскольку выработка ночью будет нулевой, а в утреннее и вечернее время крайне незначительной.

Дополнительным фактором риска является сама погода – резкие смены условий могут крайне негативно сказаться на работе такого рода системы, поскольку вызывают затруднения в отладке необходимой мощности. В некотором смысле ситуации с резкой сменой количества поглощения и выработки могут быть опасными.

Использование солнечной энергии на Земле затруднительно на данный момент из-за ее дороговизны. Фотоэлементы, необходимые для осуществления основных процессов, имеют достаточно высокую стоимость. Конечно, положительные стороны использования такого рода ресурса делают его окупаемым, однако с экономической точки зрения на данный момент не приходится говорить о полной окупаемости денежных затрат.

Тем не менее, как показывает тенденция, цена на фотоэлементы постепенно падает, так что со временем данная проблема может быть полностью решена.

Использование Солнца как источника энергии представляет затруднение еще и потому, что данный способ обработки ресурсов довольно трудоемок и неудобен. Потребление и переработка радиации напрямую зависят от чистоты пластин, которую обеспечить довольно проблематично. Кроме того, крайне негативно на процессе сказывается и нагревание элементов, которое можно предотвратить только использованием мощнейших систем охлаждения, что требует дополнительных материальных затрат, причем немалых.

Кроме того, пластины, используемые в гелиоколлекторах, после 30 лет активной работы постепенно приходят в негодность, а о стоимости фотоэлементов говорилось ранее.

Ранее говорилось, что использование такого рода ресурса сможет избавить человечество от достаточно серьезных проблем с окружающей средой в будущем. Источник ресурсов и конечный продукт действительно экологически максимально чисты.

Тем не менее использование энергии Солнца, принцип работы гелиоколлекторов заключается в применении специальных пластин с фотоэлементами, для изготовления которых требуется масса ядовитых веществ: свинца, мышьяка или калия. Само их использование вреда окружающей среде не приносит, однако, учитывая ограниченный срок их эксплуатации, со временем утилизация пластин может стать серьезной проблемой.

Для ограничения негативного воздействия на экологию производители постепенно переходят на тонкопленочные пластины, которые имеют более низкую стоимость и менее пагубно сказываются на окружающей среде.

Фильмы и книги о будущем человечества дают нам почти всегда примерно одинаковую картину данного процесса, которая, по сути, может существенно отличаться от действительности. Существует несколько способов преобразования.

Самым распространенным можно назвать уже описанное ранее задействование фотоэлементов.

В качестве альтернативы человечество активно использует гелиотермальную энергетику, основанную на нагреве специальных поверхностей, который позволяет при должном направлении полученной температуры нагревать воду. Если упростить данный процесс максимально, его можно сравнить с баками, которые используются для летнего душа в домах частного сектора.

Еще одним способом применения излучения для выработки энергии является «солнечный парус», который может действовать только в безвоздушном пространстве. Такого рода система преобразует радиацию в кинетическую энергию.

Проблема отсутствия выработки в ночное время суток частично решается солнечными аэростатными электростанциями, работа которых продолжается благодаря аккумуляции выделяемой энергии и длительности процесса остывания.

Ресурсы энергии солнца и ветра на Земле используются довольно активно, хотя мы часто и не замечаем этого. Ранее уже упоминалось простонародное нагревание воды в летнем душе. По сути, чаще всего солнечная энергия используется именно для этих целей. Тем не менее есть масса других примеров: почти в каждом магазине осветительной техники можно найти накопительные лампочки, которые могут работать без электрического тока даже ночью благодаря энергии, аккумулированной за день.

Установки на основе фотоэлементов активно используются на всевозможных насосных станциях и вентиляционных системах.

Один из важнейших ресурсов для человечества — солнечная энергия, и перспективы ее использования чрезвычайно велики. Данная отрасль активно финансируется, расширяется и совершенствуется. Сейчас солнечная энергетика максимально развита в США, где некоторые регионы используют ее как полноценный альтернативный источник питания. Так же электростанции такого типа работают в пустыне Мохаве. Другие же страны давно взяли курс на данный вид получения электроэнергии, что в скором времени, возможно, решит проблему загрязнения окружающей среды.

Использование энергии

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет. В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем. Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду. Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии.

Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную. Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию, превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии. Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию.

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий. Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов. Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас. Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

Активные системы использования солнечной энергии

В основе активных систем использования солнечной энергии применяются солнечные коллекторы. Коллектор, поглощая солнечную энергию, преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д. Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент. В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым. А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления. Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает. Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий. Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь. Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб. Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель. В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:

— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака

— могут работать при минусовых температурах.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места. Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности. Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)

— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)

— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах. Эти здания используют тихий, надежный и безопасный источник энергии — Солнце. Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.

Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года.

Этот дом спроектировала группа американских студентов. Проект был представлен на конкурс «Проектирование, строительство домов и эксплуатация солнечных батарей». Условия конкурса: представить архитектурный проект жилого дома при его экономической эффективности, энергосбережении и привлекательности. Авторы проекта доказали, что их проект доступен, привлекателен для потребителя, сочетает превосходный дизайн и максимальную эффективность. (перевод с сайта www.solardecathlon.gov)

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии. В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.

Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии.

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.

В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители. Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии. На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

Использование энергии ветра

Основное направление использования энергии ветра – получение электроэнергии при помощи ветроэнергетических установок.

Ветроэнергетические установки (ВЭУ) обеспечивают преобразование энергии ветрового потока в механическую энергию вращающего ветроколеса, а затем в электрическую энергию. В настоящее время применяются две основные конструкции ветрогенераторов: горизонтально-осевые и вертикально-осевые ветродвигатели (Рис. 12).

Основные компоненты установок обоих типов:

Ветроколесо (ротор), преобразующее энергию набегающего ветрового потока в механическую энергию вращения оси турбины. Диаметр ветроколеса колеблется от нескольких метров до нескольких десятков метров. Частота вращения составляет от 15 до 100 об/мин. Обычно для соединенных с сетью ВЭУ частота вращения ветроколеса постоянна, для автономных систем с выпрямителем и инвертором – переменная;

Мультипликатор –промежуточное звено между ветроколесом и электрогенератором, который повышает частоту вращения вала ветроколеса и обеспечивает согласование с оборотами генератора. Исключение составляют ВЭУ малой мощности со специальными генераторами на постоянных магнитах; в таких ветроустановках мультипликаторы обычно не применяются;

Башня(ее иногда укрепляют стальными растяжками), на которой установлено ветроколесо. У ВЭУ большой мощности высота башни достигает 75 м. Обычно это цилиндрические мачты, хотя применяются и решетчатые башни;

Основание (фундамент), предназначено для предотвращения падения установки при сильном ветре.

Кроме того, для защиты от поломок почти все ВЭУ большой мощности автоматически останавливаются, если скорость ветра превышает предельную величину, а для целей обслуживания оснащаются тормозным устройством [22].

Рис. 12. а) горизонтально-осевой ветродвигатель; б) вертикально-осевой ветродвигатель

Несмотря на то, что ветрогенераторы с горизонтальной осью вращения имеют более высокий КПД, у них есть один существенный недостаток — одни долго «думают», прежде чем развернуть свои лопасти «на ветер», направление которого меняется каждую секунду. То есть реально они вырабатывают меньшее количество энергии, чем это указано в паспорте, так как в момент разворота их производительность заметно падает. Установки с вертикальной осью вращения всегда находятся «по ветру» и необходимость их ориентирования отсутствует. Таким образом, оба типа ВЭУ имеют примерно равную производительность, однако благодаря традициям, сложившимся за годы развития ветроэнергетики, наибольшее распространение получили ветроагрегаты первого типа [23,24].

Спектр единичных мощностей выпускаемых ветроустановок в мире весьма широк: от нескольких сот Вт до 2-4 МВт. Малые ВЭУ (мощностью до 100 кВт) находят широкое применение для автономного питания потребителей, и сферы их использования во многом совпадают с фотопреобразователями. Крупные ветроустановки (мощностью более 100 кВт), как правило, — сетевые, то есть предназначены для работы на электрическую сеть.

Удельная стоимость крупных ВЭУ сегодня лежит в интервале 800-1000$/кВт, а малых ВЭУ, как правило, выше и увеличивается с уменьшением мощности, достигая величины 3000 $/кВт для установок мощностью от нескольких сот Вт до 1 кВт.

Автономная система энергоснабжения. Принцип работы автономной установки состоит в следующем (Рис.13): при наличии ветра ротор, состоящий из лопастей, закрепленных между кольцами, вращается и приводит в движение генератор, который с помощью электронного регулятора (контроллера) вырабатывает постоянный электрический ток напряжением 48 вольт, поступающий на аккумуляторные батареи (АКБ). Проходя по аккумуляторам, он одновременно подзаряжает их и использует в качестве проводников электричества. Далее постоянный ток с помощью инвертора преобразуется в переменный ток с напряжением 220 В и поступает непосредственно к потребителю. В безветренную погоду или при небольших скоростях ветра недостаток электроэнергии покрывается за счет АКБ, которые включены параллельно с кабелем выхода генератора и подпитывают инвертор.

Рис. 13. Автономная система энергоснабжения (с аккумуляторами)

Выработка электроэнергии для большинства современных установок начинается при скорости ветра около 4 м/сек.

Гибридная система энергоснабжения. Гибридная энергосистема подразумевает использование ВЭУ совместно с другими источниками энергии (дизель-генератор, солнечные модули, микро-ГЭС и т.п.). Эти источники энергии дополняют ВЭУ с целью обеспечения бесперебойного электроснабжения потребителя в безветренную погоду.

Ветро-дизельные системы. Ветро-дизельная система состоит из ВЭУ и дизель-электрической системы (ДЭС) с оптимально подобранными мощностями. Обычно дизель-генератор используется в сочетании с ВЭУ в случае, когда целью использования последней является экономия дизельного топлива, стоимость которого с учетом расходов на доставку может быть очень высокой. Соотношение мощности компонентов системы зависит от схемы генерирования нагрузки и ресурсов ветра.

Режим одновременной параллельной работы ВЭУ и ДЭС оценивается как недостаточно эффективный способ использования ВЭУ, поскольку доля участия ветроагрегата в системе по мощности не должна превышать 15-20 % от мощности дизель-генератора. Такие режимы можно использовать для экономии топлива в гибридных установках большой мощности.

Использование режима раздельной работы ВЭУ и ДЭС позволяет поднять долю участия ветроустановки до 50-60% и более. Однако, в этом случае неизбежно усложнение системы за счет необходимости введения системы управления, инвертного оборудования и АКБ. При этом система работает по принципу автономной, только в периоды ветрового затишья, когда заряд АКБ падает ниже определенного уровня, для обеспечения потребителей энергией автоматически (или вручную) запускается дизель-генератор. Такой режим значительно снижает количество запусков дизель-генератора и, следовательно, ведет к сокращению затрат на обслуживание и топливные расходы.

Использование современной ветро-дизельной системы, при должном внимании к проведению текущего обслуживания, может быть экономически очень эффективным при наличии достаточных ветровых ресурсов в местности, где установлен ветроагрегат.

Ветро-солнечные системы. Несмотря на довольно высокую, в настоящее время, стоимость фотоэлектрических батарей (ФБ), их использование совместно с ВЭУ в некоторых случаях может быть достаточно эффективным. Поскольку зимой существует большой потенциал ветра, а летом в ясные дни максимальный эффект можно получить, используя ФБ, то сочетание этих ресурсов оказывается выгодным для потребителя.

Использование ветроустановок совместно с микро-ГЭС. ВЭУ могут использоваться в комбинации с микро-ГЭС, имеющими резервуар для воды. В таких системах при наличии ветра ветроагрегат питает нагрузку, а излишки энергии используются для закачивания воды с нижнего бьефа на верхний. В периоды ветрового затишья энергия вырабатывается микро-ГЭС. Подобные схемы особенно эффективны при малых ресурсах гидроэнергии.

Экологические аспекты ветроэнергетики. Неблагоприятные воздействия ветроэнергетики на окружающую среду:

— Отчуждение земельных площадей. При этом ВЭУ занимают всего 1% всей территории ветропарка, а на 99 % его площади вполне возможно заниматься сельским хозяйством или другой деятельностью, что широко распространено в таких густонаселенных странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землей, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни установки;

— Шумовые воздействия, которые подразделяются на две разновидности: механические – шум от работы механических и электрических компонентов (у современных ВЭУ практически отсутствует) и аэродинамические – шум от взаимодействия ветрового потока с лопастями установки. Данная проблема может быть решена удалением ВЭС от населенных пунктов и мест отдыха;

— Низкочастотные колебания, которые передаются через почву и вызывают ощутимую вибрацию стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса. Но так как минимальное расстояние от установки до жилой застройки должно составлять не менее 300 м, то вклад ВЭУ в инфразвуковые колебания не выделяется из фона;

— Поражение животных и птиц ветровыми турбинами;

— Визуальное воздействие, которое в основном проявляется в неприятии людьми изменений в ландшафте из-за появления одной или нескольких установок. Ветроагрегаты обычно располагаются на площадках, обеспечивающих коммерческую доходность (то есть на открытых местах), поэтому они заметны. Реакция на вид ВЭУ очень субъективна – одни воспринимают их положительно, как символ чистой энергии, в то время как другие находят их нежелательным добавлением к пейзажу. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов;

— Электро-, радио- и телевизионные помехи, вызванные металлическими сооружениями ветроустановки, особенно элементами в лопастях. Чем она крупнее, тем большие помехи может создавать. Наиболее радикальный способ их уменьшения – удаление ветрового парка на соответствующее расстояние от коммуникаций. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

Мировое использование энергии

Наиболее популярные источники энергии выступают не возобновляемыми.

  • Объяснить, почему так важно отыскать и использовать возобновляемые энергетические источники.
  • Человечество развивается, а с ним растет и количество потребляемой энергии. Чтобы продолжить этот темп и поддержать качество жизни, необходимо отыскать новые возобновляемые источники энергии.
  • Возобновляемая энергия производится источниками, которые никогда не истощаются. Это может быть энергия ветра, которая уже приняла широкое распространение в Индии и Германии.
  • Мы используем 85% не возобновляемой энергии. Первая по популярности – нефть.
  • Ископаемое топливо – любое, добытое из месторождения углеводородов, вроде угля, нефти, торфа и природного газа. Их нельзя заменить, а сжигание приводит к парниковому эффекту.
  • Возобновляемая энергия – ее можно пополнить с той же скоростью, с которой тратится.

Мировое потребление энергии – общее количество расходованной энергии всем человечеством за год. Кто занимается подсчетом? Сведения готовят и публикуют определенные организации, среди которых Международное энергетическое агентство (МЭА), Управление энергетической информацией США (УЭИ) и Европейское агентство по окружающей среде.

Полученная информация очень важна, так как помогает отслеживать возможность появления проблем или энергетического кризиса. Например, МЭА настроена на ограничение глобального потепления до 2°C, но это сделать все труднее, потому что никаких масштабных действий не предпринималось.

Среди источников потребляемой энергии ископаемые стоят на первом месте. Энергия важна, так как от нее полностью зависят все цивилизованные страны. Поэтому сейчас ведутся исследования и поиски возобновляемых источников энергии.

К сожалению, примерно 40% мировой энергии добывается из нефти. В 2008 году общее потребление энергии достигло 474 эксаджоулей (474 х 10 18 Дж). Среди альтернативных вариантов можно встретить солнечную энергию, мощность ветра, геотермальную, биомассу, гидроэнергетику и энергию океана.

Перед вами диаграмма мирового потребления энергии по категориям: возобновляемые и не возобновляемые источники. Первые поступают от энергии воды, ветра, биомассы и Солнца. В США таких источников всего 10% (большая часть – гидроэлектроэнергия). Не возобновляемые достигают 85% мирового потребления (нефть, уголь, природные газы).

На диаграмме видно, что самые популярные энергетические источники нельзя восстановить. Если в ближайшее время ничего не менять, то мы придем к критической ситуации

Страны постоянно развиваются и за последние 50 лет потребность в энергии увеличилась втрое. Полагают, что в ближайшие 30 лет этот показатель снова вырастет в три раза. В Европе все чаще поднимают вопрос о возобновляемых энергетических источниках. Однако этот процесс длится очень медленно.

К 2020 году Германия собирается удовлетворить 10% общего потребления и 20% электроэнергии с возобновляющимися ресурсами. Некоторые страны делают решительные шаги, но уголь все еще стоит на первом месте. Например, в Китае 2/3 энергии приходятся на коммерческую угольную энергетику. Примерно 50% нефти импортируется из Индии, а 70% электроэнергии добывается из угля, что негативно сказывается на окружающей среде.

Источники:
Использование солнечной энергии на Земле
Солнце — так уж оно безобидно и какую пользу человечеству оно дает? Как работают солнечные электростанции и так ли прибылен этот альтернативный источник?
http://fb.ru/article/168016/ispolzovanie-solnechnoy-energii-na-zemle-perspektivyi-ispolzovaniya-energii-solntsa-na-zemle
Использование энергии
Статья о различных видах применения солнечной энергии. Пасивные и активные системы ипользования солнечной энергии.
http://realproducts.ru/kak-ispolzuyut-solnechnuyu-energiyu/
Использование энергии ветра
Основное направление использования энергии ветра – получение электроэнергии при помощи ветроэнергетических установок. Ветроэнергетические установки (ВЭУ) обеспечивают преобразование энергии
http://helpiks.org/9-42523.html
Мировое использование энергии
Наиболее популярные источники энергии выступают не возобновляемыми.
http://v-kosmose.com/fizika/mirovoe-ispolzovanie-energii/

COMMENTS